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Abstract—A fully analytical small-signal model is developed for the input and output ends of the structure. As discussed in
the frequency response of traveling-wave photodetectors. It takes [2], propagation on TWPDs is quasi-TEM. Transmission-line
into account the dependence of the equivalent transmission-line ad- equivalent circuits describing the properties of quasi-TEM

mittance on the position, induced by the nonuniform distribution of . . . . . -
the optical beam along the traveling direction. Moreover, the influ- waveguides have been extensively investigated in the literature

ence of the bias voltage on the transit time has been accurately in- [2], [3]. It should, however, be noted that both the impedance
vestigated. The model is applied to the design of an InAlAs—InGaAs and shunt admittance of these proposed equivalent circuits not

p-i-n photodetector. Its performances are investigated in term of only are independent of the light source characteristics, but also
electrical bandwidth. of the external reverse voltage used to bias the photodetector.
Index Terms—Bandwidth, saturation regime, traveling-wave Another important feature of p-i-n devices is that the junction
photodetector (TWPD). transit time generally depends on the reverse voltage. Although

the basic theory on traveling-wave solid-state device has been

l. INTRODUCTION previously published by Soohat al.[5], it ap.pligs to a simple
case when detectors operate at an electric field large enough
VER THE LAST years, interest for high-speed travyy saturate the carrier velocity. The same hypothesis has been
eling-wave photodetectors (TWPDs) has increaseffjized by Huynenet al. [6] and Huynen and Vander Vorst

[1]-[3]. These devices are expected to play an important rqtg Moreover, results provided in [7] have been obtained by
in the optical communication field because, unlike vertically,iegbcﬁng the influence of the transit time.
illuminated p-i-n photodiodes (VPDs), they can achieve a largeThe small-signal model presented in this paper takes into
bandwidth-efficiency product. As a matter of fact, to increasg.count the nonuniformity of the shunt-distributed admittance
the VPD bandwidth, the carrier transit time must be minimizegs the line induced by the exponential decrease of light power
while a thick intrinsic region is necessary for light absorptiog|ong the optical traveling path, and the influence on the transit
[4]. Moreover, traditional p-i-n photodiodes are limited by afme of the bias voltage, enabling the prediction of the TWPD
RCtime constant. The general outline of TWPDs consists gkhavior in both a saturated and unsaturated regime. In Sec
an electrical coplanar transmission line coupled to an optiG@d |1, we present in detail the distributed equations for in-
waveguide. The electrical field is applied perpendicular to thgstigating the behavior of TWPDs. We formally derive an ex-
photon path, hence, bandwidth and internal quantum efficiengyassion for the current density and we obtain an RF transmis-
can be optimized separately. If matching condition between t8g)n-line model depending on the loads at the input and output
optical and electrical signal traveling along the photodetectgpgs of the device. In Section I1l, we optimize the TWPD geom-
is achieved, the usudRC time constant cannot be definedetry for optical conversion. Section IV illustrates the efficiency
and the main limit on the bandwidth is due to reflections &f the model by comparison with simulations using previously

published models.
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the absorbed light is constant. Assuming no back-reflection ¥ (S/m) is given by
the end of structure, the optical generation rate is

G(z,t) = Go + G (ef(ao+j{1‘o)z+jwt> 1) Y, = (%) (Ae—%z —|—jwes> (5)

where the optical absorption coefficiens and propagation co- while the A and B terms result in the following:

efficient 3, are defined according to [6]. In (13, is the RF an-

gular frequency, while?, andG, represent the signal ampli- A =—1%° m'P02 <A1 4 Ayt 2(A3 + A4)> ©)
tude of the dc and ac components, respectively. As we consider 25 hw Eopnow® Hpo d

a side illumination with uniform distribution in the— y-plane, B=— Logao il )
the generation tern/(z, t) is z- andy-independent. Shvw®

In order to determine the total current density, a perturb&mh coefficientsA; — A,

t!onal approach [8] has been_ used io solve the transport eqyas (7),P is the incident optical powe§ is the illuminated sur-
tions. We assume that all variables can be written as the sum.of , i is the internal quantum efficiendy,is the Planck’s con-
"' ’

a dc or time-average part and an ac or time-dependent part. Fy int, and’ is the optical frequency. The ter represents the

ther, in agreement with the small-signal analysis, it is assumgd, .o o4 current source due to the photogeneration process.

that the ac quantities are very small in comparison with the Cshould be noted that when no light is applied, batiand B

ones. These hypotheses allow us to decouple the transport €A8zero, so that the ac current is only due to the displacement

tions into zeroth- and first-order equations, then the dc or NOechani
. X . ; ism.
perturbational equations are solved first. As shown in [9], when

considering a constant electric field versusthe y section of g Nonuniform Transmission-Line Model

the intrinsic region, and when neglecting the carrier recombina-A h _— i | TWPD h
tion, the total current density can be determined in an analyt- S shownin [2], waves propagating along a are char-
terized by electric and magnetic field that are quasi-trans-

ical fashion. To derive the analytical closed form for the curre A
density, we also neglected the charge trapping mechanism,Yflfse' As only the:-component of the ac electric field is taken

though it should be taken into account for accurate modelirl tg ?;:ctount for E;?Ch Sf?ﬁg,on’ we can atssumeﬂ}gatt:hEé_z 0
The dc and ac current densities are, respectively, i atnovariation o = Componentoccurs in thecirec-
tion. Hence, by noting that the current flows only in theirec-

@) tion, the time—harmonic form of the two curl Maxwell’s equa-
tions can be combined into

andB; given in the Appendix. In (6)

Jo(z, 2) = qFo (nopno + Potipo)

and OFE?

T
0%z

— jwpsJa(x,2) = 0. (8)
Ja(xv Z) = jwcsEa + q(Ea(nOUnO + pO/fpr)
+ Eo(nafino + Nokina + Dalipo Thus, the TWPD behavior can be completely determined once

+ Potipa)) 3) that. we _know the current de.nsii& (z,2). Integrating. (8) inthe
z-direction and using (4) yields a second-order linear nonho-

wheren andp represent the electron and hole carrier densitig§0geneous differential equation, which is solved for the small-
respectivelyy, andy, represent the electron and hole mobilSignal voltageV,(z) as a function of an optical power depen-
ities, E represents the electric fielg, represents the electrondent source term

charge, and:,; represents the material permittivity, while the V2
subscripts 0 and indicate the unperturbated (dc) and pertur- 822
bated (ac) variables, respectively. Equations (2) and (3) are very
similar to those in [9], with the exception made that carrier demshere the complex propagation coefficient and character-
sities and electric fields are nowdependent because of the opistic impedanceZ, are

tical generation rate (1). In (2) and (3), the transit time is taken

into account since carrier mobilities appear. Also, the used mo-

bility model depends on the electric field. Consequently, our Yt(2) = VZaYa(z) andZ.(z) = YZ—{Z) (10)
model allows us to simulate p-i-n devices outside the satura- ¢

tion regime. Now, integrating (3) with respect to theariable
between 0 and, and multiplying by {v/d), the ac current can

be rewritten as i d
7, = BT (11)

w

— Ve = —ZGB%G—@OHﬁo)z o

with an impedance per-unit-lengtf2/m)

od
w w .
I,=— [ Ju(z,2)de = =YV, + | — | Be #(@Hifo) : : . iy
d /0 (z,z)do + (d) ¢ As show by (5), the admittance per-unit-length is position

(4) dependent, unless no light is applied. On the other hand, the

impedance per-unit-length, can be assumed position indepen-
whered is the thickness of the intrinsic region ands the width dent as the light effect does not largely affect its value. It can be
of the photodetector, while the admittance per-unit-lengtthetermined as suggested in [2], although a full-wave analysis
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Fig. 1. Two-dimensional view of the traveling-wave topology analyzed usin % 50 100 150 200 250 300 350

Fimmwave software. The lines show the contour of the equal optical intensi
Geometrical parameters are: thickness of intrinsic drea0.87 gm, width of
mesa structure = 4 pm, sectionS = wd. Optical refraction index computed

Frequency [GHz]

by Fimmwave ise.c — 3.512 Fig. 2. Output current of input open-ended TWPDR,( = 0,

Yy off = 2.9 2L Y. = 1/Z. = 1/(7.18 Q)) for four different values of optical absorption
coefficient. Geometrical parameters ade:'= 0.2 um, w = 3 pm, length

is required for rigorous modeling [10]. The solution of the dif> = 1 mm. Electrical and optical parameters arg,. = n. = 3.5,

. . . optical wavelengthA.,; = 1.06 pm, ac modulation of optical power
ferential (9) has been determined analytically by the method gf = 0.001 nw, bias voltage” = 10 V. Solid lines are for the present

variation of parameters, although a more elegant solution gapdel, while dashed lines correspond to the model presented in [6].

be found by using the Green'’s function technique, as done by

Soohoocet al.in [5]. However, in comparison with results pro-been matched to the characteristic impedafice = Y.).
vided in [5], the solution of (9) is more complex because dturves have been traced by using two different models: solid
nonuniformity of the transmission line. Finally, the solution ofines show the results obtained with the present model, while
(9) depends on two unknowns constants, which are fixed by #j#shed lines represent a combination of previously published
plying the following conditions at the two ends of the TWPD: models [6], [7]. They use simplified equations for the carrier
motion within the intrinsic region [6]. Despite the fact that
the dashed model assumessdependence of the distributed
characteristic impedance and propagation constant and is valid
in saturation regime only, an excellent agreement is observed
whereY, andY7, are the admittance of the ending loads at theetween the two models. This is because the bias voltage

L,(0) 1.()
V) - ey

-V (12)

input and output of the device, respectively. taken equal to 10 V is sufficient to saturate thg and p,
carrier mobilities. Moreover, we used an extremely low optical
IIl. OPTICAL DESIGN power P, in order to avoid nonlinear saturation effects. Conse-

The model presented in Section Il can be used for devi?gently’ thez-dependent term in (5) is 13 orders of magnitude

optimization. Fig. 1 shows the intensity field profile of the >> than the uniform term. Under these assumptions, the

fundamental TE optical mode obtained by using the softwa‘?ma" discrepancies between solid and dashed lines have to be

Fimmwave from Photon Design, Oxford, UK., togethea?trlbuted to the different models used for the carrier motion in

with the cross section of the TWPD optimized for 138+ he p-i-n junction. Fig. 2 also shows that for valueswgfequal

4 . L :
operation. The intrinsic region has been designed by salﬁﬁ greater than 10m™!, the light absorption is total since

wiching a hiah refractive Ine.—G As redion between two e photogenerated current for those values converge at low
gang Bl53—28.47 g frequencies. The bandwidth is maximal for the highest value of

Lﬂoe'f(ﬁ:ﬁﬁzgse;ﬂzgaﬁg g ?ﬂgﬁ;&n?otggnig?l\tlfaigﬁretggg?ﬁ;g& because the distributed photogenerated current concentrates
a?;the input of the TWPD. Thus, the bandwidth limitation due

the |ntr|_nS|c region, while a single guanium We”.W'th a I_arg(tao phase mismatch between forward distributed photogenerated
absorption coefficient allows to absorb the optical radiation

. . . . : . current waves and reverse ones generated at the open end is
in a few micrometers. The Fimmwave simulation yields an 51 ; ;

. . . AN : . “reduced [7]. Hence, fat, = 10° m~", the device response is
effective modal index of 3.512 in the intrinsic region by usin

a rigorous fully vectorial solution of Maxwell’'s equations %nly limited by the carrier transit time.
9 y q ' Fig. 3 illustrates the influence on the bandwidth of the thick-

nessd of the intrinsic area, and of the mismatch between the

output load and characteristic impedance. It first compares the
Fig. 2 shows the output current frequency response foratched output-end frequency responseifer 0.2 um (- - - -)

four different values of the optical absorption coefficient andd = 1.0 um (- - -): the characteristic impedance depends

10°, 3x 10%, 10*, and 16 m~!. The photodetector has beeron d; hence, the output load;, is taken different for the two

left open at the input endY, = 0) and the output end hassimulated curves to ensure matching. The model verifies that

IV. RESULTS
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PPl : : : : junction. Finally, the solid curve (—) shows the frequency re-
—d=02mm,Z=36 4 ion. i i-
G T ds1omm Zio36 9 sponse of IL_Jm_ped phoFodeFector of same Ccross section, illumi
< I 'H TNl --d=02mm,7,=7.18Q |  nated in a similar way: in this case, the junction capacitance ef-
. N Ty | fect predominates, which reduces the bandwidth, compared to
8 Y Sl the TWPD operation mode (- -).
% afl - o 4
b . V. CONCLUSIONS
S s B T . . .
£ "~ This paper has presented a fully analytical nonuniform model
5 2r] "i~:0q  for analyzing the bandwidth of p-i-n TWPDs. The model shows
- s t~|  firstthat the nonuniformity in the distributed admittance has no
g significant influence. Also, it enables to optimize the bandwidth
§ 1 - - and quantum efficiency of the device by adjusting the absorp-
2 L. tion coefficient, geometry of the intrinsic region, output load
= osp TTTTTeSiLL YIS | impedance, and bias voltage.
TR m W w APPENDIX
Frequency [GHz] 9
Al :( (_/BpEb_2 /1'170) Hno — ﬂnEONPO)w d (13)
Fig. 3. Output current of input open-ended TWPD for three different
combinations of intrinsic thicknes$ and output loadZ.: (d = 0.2 um,
Z.=27,=718Q)curve(---),(d=10pm, Z, = Z. =36 Q):curve Ay =251, ftnow E (([3p—|—,[3n)E0+ (/I,no-f—/l,po) ) (14)
(---)d=02um, Z. =718Q, 7, = 36 Q): curve (—). Geometrical
parameters arav = 3 um, L = 1 mm. Electrical and optical parameters are
= N = I = v — 6 -1 = jwd | E, n 2 2
grop; mn\r;. 3.5, Aopt = 1.06 pm, vy =2 X 10°m~", Poc = 0.0010W, 4, :(—e]‘*’ /Eon o+1)MPOE0 o~ (no+Eofn) (15)
P AL A— : : : . . Ay = 1—e]’wd/’5wv°) tnottpo2Eo? (5, E 16
45 v T - — Tamped PD. V=50 4 ( HnoMpo 0 (/[p 0+.U}p0) ( )
—_ - - TWPD, V=0.1 V
L TS E T, -.— TWPD, V=50V
H N -~ : ' B, = ((1_eawd/Eoupo) fip02 + (1_eJWd/E0Hn0) Mnoz) E,
§ 3.5 .
g +jwd(pimo+ipo) 17)
g o )
an
£
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